lis ca. 15 mm. longis. Bractare ad basin distinctae, ca. 3 mm . longae. Hypanthium poculiforme, 2.5 mm . longum. Calycis tubus ca. 0.5 mm . longus; lobi late rotundati ca. 1 mm . longi. Fetala ovata, 3 mm . longa. Antherae crasse subulatao, 2 mm . longae, basi tuberculo dorsali ornatae.

Type, Cuatrecasas 21082, from Río Calima, in the Choco region of El Valle, Colombia, alt. $30--50 \mathrm{~m}$. Since the apecimen exhibits only a single flower, no dissection has beon made and the dimensions stated above are approximate. The anthers are clearly visible and leave no doubt of the generic position of the plant. Only three species with anisophyllous leaves have hitherto been described. Of these T. glabrescens Tr. has sessile, cordate-clasping leaves; T. insignis Tr , has much larger 5 -nerved leaves, setose stem, and bracts longer than the calyx. T. anisophylla Tr ., to which our plant is most closely related, has subsessile leaves broadly rounded or subcordate at base, much longer peduncles and bracts equaling the calyx.

NOTES ON SOME AMERICAN fLANTS

H. A. Gleason

Sida Elliottii and Sida inflexa.

Sida Elliottif is a well known species of the southeastorn states, represented in the larger herbaria by ample series of spocimens. Such manuals as Gray, seventh edition, Britton \& Brown, second edition, and Small give its range as extending north to Virginia and Missouri. A recent colloction of the Virginian plant by Fernald has led him to examine the species carefully and as a consequence to segregate the plants of Virginia, Missouri, Tennesses, and one collection from Alabama as Sida inflexa Fern.

The differences between S. Elliottii and the proposed species are stated by Fernald (Rhodora $40: 463,464$) as shown below.

1. $\frac{S_{0}}{S_{0}} \frac{E_{0}}{1}$ (a) Stems noarly glabrous, (b) $1.5--8 \mathrm{dm}$. tall. $\underset{\text { Sol }}{\mathrm{I}_{0}}$ (a) Caule minute atellato-puberulo, (b) 0.6--1. 2 m .
2. S. E. (a) Cauline leaves linear, (b) mostly $1.5--5 \mathrm{~cm}$. long, (c) $1.5--7 \mathrm{~mm}$. wide.
3. S. E. (a) Flowers mostly solitary in the axils and (b) on peduncles up to 2.5 cm . long.
S. i. (a) Floribus plerumque corymbosis terminalibus, (b) pedunculis ad 1.7 cm . longis.
4. S. E. Calyx at most strigose on the ribs at base.
S. F. Calycibus basi plus minusve villoso-hirsutis.
5. S. S. $\frac{\mathrm{E}_{0}}{}$ Carpels (a) with prominent erect teeth, (b) glabrous or nearly 80 on the back.
S. i. Carpellis apice valde incurvatis, (b) dorso hispid-

Of these characters, impressive in their totality, no. I may be neglected as descriptive but not diagnostic, since the dimensions of one are mostly included in those of the other. Under no. 2, the actual dimensions overlap very much, but the ratio of length to width seems derivable from the stated figures at 7--10 times as long as wide in S. Elliott11 and 3-6 times in S. inflexa. Under no. 3, the second part of the statement refers only to maximum dimensions. The first part, although purely qualitative refers to a condition which can generally be recognized, although there is no surety thet a corymbose inflorescence does not eventually become axillary by elongation of the internodes. Numbers 4 and 5, especially the latter, appear to afford the best diagnostic characters.

The Britton Herbarium contains forty shoets of S. Slliottii in the broad pre-segregation sense, of which six are from Tennessee and Missouri and are referable by Fernald's citations to S. inflexa. Also among the forty are three from Alabama, from which state Fernald also cites S. inflexa. The remaining thirty-one are from Florida and the Gulf Coast and are referable to S. Elliottii according to the geographic distribution stated by Fernald. These sheets have been carefully examined by me. Leaf-width has generally been measured by eye-piece micrometer under a magnification of 10. Pubescence of calyx and carpels has been observed under a binocular magnifying 23 times. Not every shoot illustrates all of the characters stated by Fernald.
2. Ratio of length to width of leaf. Sixteen Gulf Coast plants show the broadest leaves 3-6 times as long as wide, thereby corresponding to the character of the more northern S. inflexa. Fifteen show the broadest leaf seven times as long as wide, or more, agreeing with Fernald's statement for S. Elliottif. The narrowest upper leaves, so far as observed, are 8--24 times as long as wide. In the alabama plants, the lower leaves are 2.3--3 times, the upper 12--15 times as long as wide. In the Tennessee and Missouri plants, the lowor are $3-6$, the upper $8--12$ times as long as wide, in the latter features transcending the figures stated by Fernald
for S. inflexa.
3. Corymbose or axillary flowers. In 10 Gulf Coast sheets the flowers may be described as corymbose, a character adduced for S. inflexa. In 18 they are axillary, as otated for S. Elliottii. In two Alabama sheots they are axillary; in one they are corymbose. In six Tennessee and Missouri plants (S. inflexa) they are all corymbose.
4. Fubescence of the calyx. Fernald atates that the calyx of S. Elliottil is at most otrigose on the ribs at base. No strigose cslyx was observed in all 40 sheots. Eleven Gulf Cosat plants (S. Slliottii) are distinctly villous with soft, spreading, sleader haire on the midrib of each sepal, a stated for S. inflexe; 19 are not villous. Of the six Tennessee and Missouríplants (S. inflexa) all are villous on the midribs. Fernald does not state the pubescence of the surface of the calyx. In two sheets from the Gulf Cosist and one from Alabama, it is glabrous; in two sheets from the Gulf Coast and one from Tennessee (S. inflexa) it is nearly glebrous; in all others it is distinctly but minutely stellato.

5a. Direction of the beak. In 11 sheots from the Gulf Coast (S. Elliottii) the beaks are erect; also in two from Alabama, and in four (S. inflexa) from Tennessee and Missouri. In three shoets, all from the Gulf Coast (S. 3lliottii), they are incurved, but the incurving is apparently due to the direction of pressure when the plents were dried. In the other sheets mature carpels are not present or not easily visible.

5b. Pubescence of the carpels. In every sheet where curpels are exnibited the beaks of the carpel are minutely hispidulous. Also in every shest the back of the carpsl below the base of the beske is glabrous.

In summary, carpels with naturally incurved beake and hispid on the back do not exist in our specimens of the species, gven in the specimens cited by Fernald as S. inflexa. Villous calyces exist in the specimens referable to S. inflexa but also in a third of the Gulf Coast plants. Corymbose inflorescence exists in S. inflexa, but also in a third of the Gulf Coast plents. In the Gulf Coast region there is no correlation between villous celyces and corymbose inflorescence. The distinction between the two in proportions of their leaves is largely fictitious.

In conclusion, I oan not recognize S. inflexa Fern. as a species, nor even as a variety or form.

> Sium suave.

Slum suave Walt. is a widespread species acrose the northern states and adjacent Canada from the Atlentic to the

Pacific. When well grown in our northerm wet sunny meadons, or farther west in the open prairie "sloughs", it becomes a great husky plant up to 2 meters tall or even more, with a stem 3 cm . in diameter near the base end very prominently and sharply angled. Under such favorable circumstances the principal leaves may be 3 dm . long with as many as 17 leaflets and these up to 17 cm . long and 5 cm . wide.

But the plant is exceedingly variable in stature, leaf-let-shape, and dimensions. The leaflets may be linear and only 2 cm . wide, the stem may be slender and weak, the umbels comparatively few. The umbels nevertheless retain their ueual appearance, except for an occasional reduction in the number of primary rays, and the character of the rays, the pedicels, and the fruit seems to be as uniform as one expects to find within a single species. Whether these variations are genetic and consequently heritable, or are caused by a variable environment, such as amount of shade, depth of water or the water table, or competition from surrounding vegetation, is as yet unknown. Long familiarity with the plant in the field has led me to believe that much of its variability is caused by the environment. I have no proof thet such is the cese; it is merely an impression based on cumulative experience.

Sium Carsonil Durand has been recognized by some as a species since its first publication in 1867 and is atill so considered by Mathias and Constance in 1945. It was reduced to varietal rank by Stevens in 1910 and to a mere form of S. suave by Fassett in 1921. Fassett's disposition, with which I agree, was accepted by Fernald in 1943 (in print) or earlier.

Sium floridenum was described by Small in 1933 in his usual sketchy fashion and based on two specimens in the herbarium of The New York Botanical Garden, both from the Chipola River in Florida. Extracting his contrasting cinaracters both from his key and his descriptions and placing them together, we have the following, with the upper line of each pair referring to S. suave, the lower to S. floridanum:

1. Flant 6--19 dm. tall, stout.
2. Flant amaller and more slender.
3. Dilated petiole auriculate at the top.
4. Dilated petiole oblique at the top.
5. Ieaflete 11--17, linear to linear-lanceolate or rarely wider.
6. Ieaflets 3--11, ovete to elliptic-lanceolate.
7. Lesflets saliently sharp-serrate or incised.
8. Leaflets finely appressed-serrate.
9. Unbel-rays slender.
10. Unbel-rays filiform.
11. Larger corollas fully 2 mm . wide.
12. Larger corollas less than 2 mm . wide.

As to the significance of these differences, let us examin the type and compare it with northern plants always accopped as S. suave.

Fig. 1
Leaf-margins

1. The type specimen and a duplicate of it are the tops of plants. They do not indicate that the plant was smaller. The thickness of the stems, in comparison with plants of S. suave measured at the same distance from the summit, does not indicate that the plants were significantly more olender. Some plants of S. suave, as Blake 5456 from New Brunowick, are much stouter; others, as Hartmann 215 from New Hampshire, are equally slender.
2. The petiole of the type of S. floridenum does taper gradually to the summit. In S. suave it may taper gradually, or be abruptly narrowed, or very distinctly auriculate.
3. The largest leaves of the type have only 9 leaflets. On the upper and uppermost leaves this number is progress-
ively reduced to $7,5,3$, and 1 . In S. suave there may be as many as 17; other plants show, as far as the dried specimens indicate, a lower maximum, of ten 11 or 9 , in one instance 7 , while the leaves are again progreseivoly reduced upward to 5,3 , or oven 1.
4. The leaf-serration of S. suave varies groatly and apparently without relation to any other structural feature. Six leaf-margins of northern plants are shown in our fig. 1 (p. 285), all magnified 8 diameters. The type of S. floridanum is very uniform in the character of its serration and a typical contimeter is also shown in our figure. I trust that the reader will try to decide for himself, on the baeis of Small's statements, which part of the figure represents S. $_{\text {. }}$ floridanum before turning to the clue in the last paragraph below.
5. Small's statement noeds more explicit statement before it can be discussed.
6. Measurements of dry flowers have been made repeatedly, selecting always those that were pressed open to exhibit their full width, but making no allowance for the distention caused by flattening of the hypanthium. The type of S. floridanum varies from 18 to 23 unite on my eye-piece micrometer, while S. ousve varies from 18 to 26. This corresponde to approximately $1.7--2.2$, or $1.7--2.4 \mathrm{~mm}$.

Mathias and Constance add two characters:
7. Bracts $6--10,3-15 \mathrm{~mm}$. long.
7. Bracts $2 \mathrm{~m}-5,2--5 \mathrm{~mm}$. long.
8. Rays 10--20:
8. Reye 6--10.

In the type of S. floridanum the bracts on 3 umbels are 2, 5, end 5; their lengths are $2.7,3.6$, and 6.6 mm . The bracts in S. suave are usually either 5 or 8 , the larger number holding for somewhat more then half the planta; umbels with 3 or 2 bracts are occasional snd one bractless plant has been seen.

Fornald in 1943 added another character, or rather dofined one suggested by Small:
9. Foduncle, primary raye, and pedicols angulate.
9. Feduncle, primary rays, and pedicels filiform.

The statement concerning S. suave is correct as to peduncle and primary rays. The podicels may or may not appear angled when dry, but every opecimen which I have examined after boiling has been essentially terete. The type of S. floridanum has the poduncle and primary rays just as atrongly angled as in inflorescences of similar size in S. suave. The
pedicele also appear angled when dry.
It seems clear to me that there are no definite morphological features associated with S. floridanum which might justify its meintenance as a species. Its sole character is thet of general frailty or debility in contrast with the sturdineas and virility of the usual type and such a character might easily be the result of a sheded environment on a typically aun-loving plant. The same conclusion is suggested by Fernald's otatements that ite potioles are widely spreading, while those of s. euave are accending.

The source of the seven leaf-margins illustrated in Fig. 1 (p. 285) is: (a) Jones 12593, from Illinois; (b) Hartman 215 from Ner Hampehire; (c) type of S. floridanum; (d) Fernald \& Wiegand 5954 from Newfoundland; (e) Deam 21292 from Indiana; (f) Gleason \& Gleason 197 from Michigan; and (g) Senn 1516 from Ontario.

Rhamnus lanceolatus.

Rhamnus lanceolatus Pursh is a well known species of the Middle West, where it inhabits rich moiat soil and is, in general, the sole representative of the genus. From southern Illinois soutnward its range overlaps with that of R. carolinianus :Talt.

Fursh's description reade:
R. inermis, arborescens; foliis lancoolatis serrulatis utrinque acutis subtus pubescentibus. On the side of hills: Tennessee. Lyon. v. s. In Herb. Lyon. Berries black.

Pursh had four other species in his Flora and it is noteworthy that this is the only one without mention of floral characters and the only one of our three native species which he had not seen growing.

Twenty-four years later Torrey and Gray knew this plant directly from kentucky and Missouri specimens and accopted fursh's atatement thet it grew also in Tennessee. Their description must have been written primarily from the actual material at hend, but through deference to Pursh's "foliis.. ...subtus pubescentibus" they stated "more or less pubescent beneath." At the same time ond place they described as new R. parvifolius, with pubescont leaves and tetrendrous flowera, based on a Barton specimen from Harper's Ferry, iW. Va. The type of the opecies is at the New York Botanical Garden and confirms what Torrey and Gray wrote in the ir appendix two years later: "We have reason to suspect that this plant is not distinct from R. lancoolatus." Other specimens agresing with Barton's type occur from southern Fennsylvanis to Alabama. All have leaves densely pubescent at anthesis
with apparontly goldon-brown hairs and remaining pubescont at maturity.

West of the mountains, where the species is comparatively coumon, the leaves may or may not be sparsely pubescent at anthesis and are regularly glabrescont by maturity. Finding no other character to distinguish the two populations, I propose to recognize them as woll marked geographical varioties:

Rhamnus lanoeolatus Pursh, var. lanceolatus. Spocioi pars typioa, follis molliter pubesoentibus.
rhannus lanceolatus pursh, var. GLAbRaTUS Gl., var. nov. Folifs juventute glabris vel parce villosulis, maturitate glabrie. Rich moist moode at low olevatione, west of the mountaine, Kontucky and Tennesseo to Nebraska and Arkansas. Typo, Deam 787, Brookville, Franklin County, Indiana, in Herb. N. Y. Bot. Gard.

Triadonum.

The for species of Triadonum, although segregated generically more than a oentury ago, have often been considered as forming merely one seotion of the large genus hypericum. Brition adopted the genus Triadenum in the Illustrated Flora and was followed by Small and Rydborg. The characters of the genus are well known. The petals are imbricate rather than convolute; the stamens are only nine and are united into three fasoiclos of three stamens each; these fascicles alternate with three conspicuous hypogynous glands; the -potals are pink, flesh-color, or greenish instead of yollow. It is purely a matter of personal opinion whether these characters are oonsidered of sufficient importanoe to warrant the segrogation of a gonus. In my personal opinion they are, and I amacoordingly discussing our American speoies under the generic name Triadonum.

For many yeare our plants have beon olassified in two opocios, T. potiolatum (Malt.) Britt. and T. virginicum (L.) Raf.

As to the first of these, Fernald showed clearly in 1936 that it consisted of two populations, to one of which he gave a varietal name, maintaining the other as the typical element of the species without a distinctive name. Walter had desoribed them both as species of Hyperioum in 1788 but unfortunately one of his names, $H_{\text {. potiolatum, was a homonym }}$ antedated by H_{0} petiolatum L. The oldest valid name for this species under the genue Hyperioum 1s H. Walteri Gmol. The other of Nalter's species, H_{0} tubulosum, has been described in recont literature as T. Iongifolium small, over which the specific epithet tubulosum has more than a oentury priority.

It is again purely a matter of personal opinion whether
these two populations are considered as two species, or as two variotios of one species, or as a single species. In my opinion they are species. Fernald has pointed out oorrectly the difference in the leaves. The sepals of tubulosum averago about 1 mm . longor and aro almost always acute. The leaves of tubulosum have no superficial glands and also laok the translucent glands found in the other opecios.

While valid names for both are available in Hypericum, new combinations are necessary when the plants are placed in Triadonum.

TRIADENUM WALTERI (Gmel.) comb. nov. Hypericon Waltori Gmel. Syst. Nat. 2: 1159. 1791. Hypericum petiolatum Walt. F1. Car. 191. 1788; not H. potiolatum L. 1762. H. tubulosum Walt. var. Waltori Lott, Jour. Arnold Arb. 19: 279. 1938. Triadonum potiolatum Britt. Ill. F1. 2:437. 1897.

TRIADENUM TUBULOSUM (Walt.) comb. nov. Hypericum tubulosum Halt. Fl. Car. 191. 1788. T. longifolium Small, Bull. Torrey Club 25: 140. 1898. H. petiolatum var. tubulosum Forn. Rhodora 38: 436. 1936. H. Nalteri var. tubulosum Lott, Jour. Arnold Arb. 19: 151. 1938.

Fernald has also indicated the differences between the northern and southern forms of T. virginicum. These differonces are so cloar-cut that Spach eeparated the plants apecifically a century ago and one can only wonder why they were neglected by all (so far as I know) American botanists for an oven hundred years. On the basis of these differences Fornald proposed to distinguish the plants varietally, but nore again I believe that he did not go far onough and that wo shall do better to treat thom as species. Again a new combination is necessary.

TRIADENUM FRASERI (Spach) comb. nov. Hypericum Fraseri Spach, Ann. Sci. Nat. Bot. II. 5: 168. 1836. H. Virginicum var. Fraseri Fern. Phodora 38: 434. 1936.

I have measured 155 fruits of the aggregate species under an oyepiece micrometer, using a magnification which permitted accuracy to the tenth of a millimeter. The sepals of the northern T. Fraseri vary from 2.8 to 4.9 mm . long, measured from the sinus, with an average length of 3.77 mm . Furthormore these sopals are always obtuse and usually actually rounded at the summit. Also, they ard wider at the middle than at the base and consequently commonly appear olliptic or spatulate in general outline. The sepals of the southern T. virginicum vary from 4.3 to 8.4 mm . long and avorage $5.86 \mathrm{~mm} \cdot$; only one plant exhibited sopals lose than 5 ma. long. These sepals taper toward the summit, which is sometimes acuminate, more commonly acute, and raroly narrowly obtuse. Because of the long torminal taper they appear lanceolate or oblong-lanceolate in outline.

The styles of the northorn T. Fraseri, as they persist on
the fruit, vary from 0.6 to 1.5 mm . long and average 1.06 mm . Yeasurements wore made only on the fruit, since they are rarely completely visible in flowers without boiling and dissecting. The atyles of T. virginicum vary from 1.9 mm . (two instances) to 3.5 mm . and average 2.72 mm .

When the dimensions of the sepals and styles are plotted together [see the chart on page 290], they show that the aggregate is composed of two completely separate populations.

The distribution of the aggregate is in some waye similar to that of Sarracenia purpurea, which consists of a southern population chiefly confined to the coastal plain and a nor thern one extending far inland. T. virginicum (L.) Raf. is essentially a plant of the coastal plain from Nova Scotia to the Gulf coast, but extends inland acrose Now York into southern Ontario and reappears in northorn Indiana. T. Fraseri (Spach) G1: is ossentialiy a boreal plant, extending from Nowfoundland and Labrador to Manitoba and southward to Conneoticut, Now York, northern Indiana, and Nebraska, or at higher altitudes to West Virginia.

A LETTER FROM FERDIRAND VON MUELLER

H. A. Gleason

There recently came into my possession a hand-writton letter from the noted Australian botanist, Sir Ferdinand Jakob Hoinrich von Muellor, addressed to B. Daydon Jackeon (1), which has some biographical and bibliographical interest. Von Mueller was born in Germany in 1825, emigrated at an early age to Australia, became a Britioh subject, devoted his life to a study of the flora of Australia, was government botanist for forty-four years and director of the Melbourne Botanic Garden for sixteon years, was created Baron by the King of Wirtomberg in 1871, was knighted by queon Victoria, and died in 1896. His careor therofore shows some parallelism with those of Sir Richard and Sir Robert Schomburgk, who were also born in Germany. The letter reade:

$$
21.11 .83 .
$$

Herenith, daar Mr. Jackson, I beg to send you a oopy of part of a letter from Dr. Pournier (2), just recoived, concerning the priority of Vahea over Landolphia, as this question will interest you not only for these genera but in many other respects for your nomenclator (3). I also forward a copy of the important prospectus, found by Dr. Fournior, as

